KQ

Feb 04, 2022

Contents

1 Requirements
2 Installation
3 Contents

Index

17

KQ

KQ (Kafka Queue) is a Python library which lets you enqueue and execute jobs asynchronously using Apache Kafka.
It uses kafka-python under the hood.

Contents 1

https://github.com/joowani/kq/blob/main/LICENSE
https://kafka.apache.org
https://github.com/dpkp/kafka-python

KQ

Contents

CHAPTER 1

Requirements

* Apache Kafka 0.9+
¢ Python 3.6+

https://kafka.apache.org

KQ

Chapter 1. Requirements

CHAPTER 2

Installation

Install via pip:

pip install kg

https://pip.pypa.io

KQ

Chapter 2. Installation

CHAPTER 3

Contents

3.1 Getting Started

Start your Kafka instance. Example using Docker:

’docker run -p 9092:9092 —-e ADV_HOST=127.0.0.1 lensesio/fast-data-dev

Define your KQ " worker.py module:

import logging

from kafka import KafkaConsumer
from kg import Worker

Set up logging.

formatter = logging.Formatter('[? (levelna
stream_handler = logging.StreamHandler ()
stream_handler.setFormatter (formatter)
logger = logging.getLogger ('kg.worker")
logger.setlevel (logging.DEBUG)
logger.addHandler (stream_handler)

Set up a Kafka consumer.

consumer = KafkaConsumer (
bootstrap_servers='127.0.0.1:9092",
group_id='group',
auto_offset_reset='latest'

Set up a worker.
worker = Worker (topic='topic', consumer=consumer)
worker.start ()

Start the worker:

https://github.com/lensesio/fast-data-dev

KQ

python my_worker.py
[INFO] Starting Worker (hosts=127.0.0.1:9092 topic=topic, group=group)

Enqueue a function call:

import requests

from kafka import KafkaProducer
from kg import Queue

Set up a Kafka producer.
producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

Set up a queue.
queue = Queue (topic='topic', producer=producer)

Enqueue a function call.
job = queue.enqueue (requests.get, 'https://google.com')

You can also specify the job timeout, Kafka message key and partition.
job = queue.using(timeout=5, key=b'foo', partition=0).enqueue (requests.get, 'https://
—google.com')

Let the worker process it in the background:

python my_worker.py

[INFO] Starting Worker (hosts=127.0.0.1:9092, topic=topic, group=group)
[INFO] Processing Message (topic=topic, partition=0, offset=0)

[INFO] Executing job c7bf2359: requests.api.get ('https://www.google.com')
[INFO] Job c7bf2359 returned: <Response [200]>

3.2 Queue

class kqg.queue.Queue (topic: str, producer: kafka.producer.kafka.KafkaProducer, serializer: Op-
tional{Callable[[...], bytes]] = None, timeout: int = 0, logger: Op-
tional[logging.Logger] = None)
Enqueues function calls in Kafka topics as jobs.

Parameters
* topic (str)— Name of the Kafka topic.

* producer (kafka.KafkaProducer) — Kafka producer instance. For more details on produc-
ers, refer to kafka-python’s documentation.

* serializer (callable)— Callable which takes a job namedtuple and returns a serial-
ized byte string. If not set, dil1l.dumps is used by default. See /ere for more details.

* timeout (int | float) - Default job timeout threshold in seconds. If left at O (de-
fault), jobs run until completion. This value can be overridden when enqueueing jobs.

* logger (logging.Logger) — Logger for recording queue activities. If not set, logger
named kqg.queue is used with default settings (you need to define your own formatters
and handlers). See here for more details.

Example:

8 Chapter 3. Contents

http://kafka-python.rtfd.io/en/master/apidoc/KafkaProducer.html
http://kafka-python.rtfd.io/en/master/#kafkaproducer

KQ

import requests

from kafka import KafkaProducer
from kg import Queue

Set up a Kafka producer.

producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

Set up a queue.

queue = Queue (topic='topic', producer=producer, timeout=3600)

Enqueue a function call.
job = queue.enqueue (requests.get,

'https://www.google.com/")

hosts

Return comma-separated Kafka hosts and ports string.

Returns Comma-separated Kafka hosts and ports.

Return type str

topic
Return the name of the Kafka topic.

Returns Name of the Kafka topic.
Return type str

producer
Return the Kafka producer instance.

Returns Kafka producer instance.
Return type kafka.KafkaProducer

serializer
Return the serializer function.

Returns Serializer function.
Return type callable

timeout

Return the default job timeout threshold in seconds.

Returns Default job timeout threshold in seconds.

Return type float | int

enqueue (func: Callable[]...], bytes], *args,

Enqueue a function call or a job.

Parameters

» func (callable | kg.Job) — Function or a job object. Must be serializable and available to

workers.

* args — Positional arguments for the function. Ignored if func is a job object.

* kwargs — Keyword arguments for the function. Ignored if func is a job object.

Returns Enqueued job.

Return type kq.Job

**kwargs) — kq.job.Job

3.2.

Queue

KQ

Example:

import requests

from kafka import KafkaProducer
from kg import Job, Queue

Set up a Kafka producer.
producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

Set up a queue.
queue = Queue (topic='topic', producer=producer)

Enqueue a function call.
queue.enqueue (requests.get, 'https://www.google.com/")

Enqueue a job object.
job = Job (func=requests.get, args=['https://www.google.com/"'])
queue.enqueue (job)

Note: The following rules apply when enqueueing a job:
e If Job. id is not set, a random one is generated.
e If Job.timestamp is set, it is replaced with current time.
* If Job.topic is set, it is replaced with current topic.
e If Job.timeout is set, its value overrides others.
e If Job.key is set, its value overrides others.

e If Job.partition is set, its value overrides others.

using (timeout: Union[float, int, None] = None, key: Optional[bytes] = None, partition: Optional[int]

= None) — kq.queue.EnqueueSpec
Set enqueue specifications such as timeout, key and partition.

Parameters

e timeout (int | float) - Job timeout threshold in seconds. If not set, default time-
out (specified during queue initialization) is used instead.

* key (bytes) — Katka message key. Jobs with the same keys are sent to the same topic
partition and executed sequentially. Applies only if the partition parameter is not set, and
the producer’s partitioner configuration is left as default. For more details on producers,
refer to kafka-python’s documentation.

* partition (int) — Topic partition the message is sent to. If not set, the producer’s
partitioner selects the partition. For more details on producers, refer to kafka-python’s
documentation.

Returns Enqueue specification object which has an enqueue method with the same signature
as kg.queue.Queue.enqueue ().

Return type EnqueueSpec

Example:

10

Chapter 3. Contents

http://kafka-python.rtfd.io/en/master/#kafkaproducer
http://kafka-python.rtfd.io/en/master/#kafkaproducer

KQ

import requests

from kafka import KafkaProducer
from kg import Job, Queue

Set up a Kafka producer.
producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

Set up a queue.
queue = Queue (topic='topic', producer=producer)

url = 'https://www.google.com/"'

Enqueue a function call in partition 0 with message key 'foo'.
queue.using(partition=0, key=b'foo') .enqueue (requests.get, url)

Enqueue a function call with a timeout of 10 seconds.
queue.using (timeout=10) .enqueue (requests.get, url)

Job values are preferred over values set with "using" method.
job = Job (func=requests.get, args=[url], timeout=b5)
queue.using (timeout=10) .enqueue (job) # timeout is still 5

3.3 Worker

class kg.worker.Worker (fopic: str, consumer: kafka.consumer.group.KafkaConsumer, callback: Op-
tional[Callable[]...], Any]] = None, deserializer: Optional[Callable[[bytes],
Any]] = None, logger: Optional[logging.Logger] = None)
Fetches jobs from Kafka topics and processes them.
Parameters
* topic (str)— Name of the Kafka topic.

* consumer (kafka.KafkaConsumer) — Kafka consumer instance with a group ID (required).
For more details on consumers, refer to kafka-python’s documentation.

* callback (callable) — Callback function which is executed every time a job is pro-
cessed. See here for more details.

* deserializer (callable) — Callable which takes a byte string and returns a dese-
rialized job namedtuple. If not set, dill.loads is used by default. See here for more
details.

* logger (logging.Logger) — Logger for recording worker activities. If not set, logger
named kg .worker is used with default settings (you need to define your own formatters
and handlers). See here for more details.

Example:

from kafka import KafkaConsumer
from kg import Worker

Set up a Kafka consumer. Group ID is required.

consumer = KafkaConsumer (
bootstrap_servers='127.0.0.1:9092",
group_id="'group'

(continues on next page)

3.3. Worker 11

http://kafka-python.rtfd.io/en/master/apidoc/KafkaConsumer.html
http://kafka-python.rtfd.io/en/master/#kafkaconsumer

KQ

(continued from previous page)

Set up a worker.

worker

Start

= Worker (topic='topic', consumer=consumer)

the worker to process jobs.

worker.start ()

hosts

Return comma-separated Kafka hosts and ports string.

topic

Returns Comma-separated Kafka hosts and ports.

Return type str

Return the name of the Kafka topic.

group

Returns Name of the Kafka topic.

Return type str

Return the Kafka consumer group ID.

Returns Kafka consumer group ID.

Return type str

consumer
Return the Kafka consumer instance.

Returns Kafka consumer instance.

Return type kafka.KafkaConsumer

deserializer
Return the deserializer function.

Returns Deserializer function.

Return type callable

callback
Return the callback function.

start (max_messages: Optional[int] = None, commit_offsets: bool = True) — int

Returns Callback function, or None if not set.

Return type callable | None

Start processing Kafka messages and executing jobs.

Parameters

* max_messages (int | None) — Maximum number of Kafka messages to process

before stopping. If not set, worker runs until interrupted.

* commit_offsets (bool) - If set to True, consumer offsets are committed every time

a message is processed (default: True).
Returns Total number of messages processed.

Return type int

12

Chapter 3. Contents

KQ

3.4 Job

KQ encapsulates jobs using kg . Job dataclass:

from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union

@dataclass (frozen=True)
class Job:

KO job UUID.
id: Optional[str] = None

Unix timestamp indicating when the job was queued.
timestamp: Optional[int] = None

Name of the Kafka topic.
topic: Optional[str] = None

Function to execute.
func: Optional[Callable] = None

Positional arguments for the function.
args: Optional[List] = None

Keyword arguments for the function.
kwargs: Optional[Dict] = None

Job timeout threshold in seconds.
timeout: Optional[Union[float, int]] = None

Kafka message key. Jobs with the same keys are sent

to the same topic partition and executed sequentially.
Applies only when the "partition" field is not set.
key: Optional[str] = None

Kafka topic partition. If set, the "key" field is ignored.
partition: Optional[str] = None

When a function call is enqueued, an instance of this dataclass is created to store the message and the metadata. It is
then serialized into a byte string and sent to Kafka.

3.5 Message

KQ encapsulates Kafka messages using kg .Message dataclass:

from dataclasses import dataclass
from typing import Optional

@dataclass (frozen=True)

class Message:
Name of the Kafka topic.
topic: str

(continues on next page)

3.4. Job 13

KQ

(continued from previous page)

Kafka topic partition.
partition: int

Partition offset.
offset: int

Kafka message key.
key: Optional [bytes]

Kafka message payload.
value: bytes

Raw Kafka messages are converted into above dataclasses, which are then sent to workers (and also to callback
Junctions if defined).

3.6 Callback

KQ lets you assign a callback function to workers. The callback function is invoked each time a message is processed.
It must accept the following positional arguments:

e status (str): Job status. Possible values are:

invalid : Job could not be deserialized, or was malformed.

— failure : Job raised an exception.

timeout : Job took too long and timed out.
— success : Job successfully finished and returned a result.

* message (kg.Message): Kafka message.

job (kq.Job | None): Job object, or None if Kafka message was invalid or malformed.
¢ result (object | None): Job result, or None if an exception was raised.
* exception (Exception | None): Exception raised, or None if job finished successfully.
* stacktrace (str | None): Exception stacktrace, or None if job finished successfully.
You can assign your callback function during worker initialization.

Example:

from kafka import KafkaConsumer
from kg import Worker

def callback (status, message, job, result, exception, stacktrace):
"""This 1s an example callback showing what arguments to expect."""

assert status in ['invalid', 'success', 'timeout', 'failure']
assert isinstance (message, kg.Message)

if status == 'invalid':
assert Jjob is None
assert result is None
assert exception is None

(continues on next page)

14 Chapter 3. Contents

KQ

(continued from previous page)

assert stacktrace is None

if status == 'success':
assert isinstance (job, kg.Job)
assert exception is None
assert stacktrace is None

elif status == 'timeout':
assert isinstance (job, kg.Job)
assert result is None
assert exception is None
assert stacktrace is None

elif status == 'failure':
assert isinstance (job, kg.Job)
assert result is None
assert exception is not None
assert stacktrace is not None

consumer = KafkaConsumer (
bootstrap_servers='127.0.0.1:9092",
group_id="group'

Inject your callback function during worker initialization.
worker = Worker ('topic', consumer, callback=callback)

3.7 Serializer

You can use custom functions for serialization. By default, KQ uses the dill library.
The serializer function must take a job namedtuple and return a byte string. You can inject it during queue initialization.

Example:

Let's use pickle instead of dill
import pickle

from kafka import KafkaProducer
from kg import Queue

producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

Inject your serializer function during queue initialization.
queue = Queue ('topic', producer, serializer=pickle.dumps)

The deserializer function must take a byte string and returns a job namedtuple. You can inject it during worker
initialization.

Example:

Let's use pickle instead of dill
import pickle

from kafka import KafkaConsumer

(continues on next page)

3.7. Serializer 15

https://github.com/uqfoundation/dill

KQ

(continued from previous page)

from kg import Worker

consumer = KafkaConsumer (
bootstrap_servers='127.0.0.1:9092",
group_id="group'

Inject your deserializer function during worker initialization.
worker = Worker ('topic', consumer, deserializer=pickle.loads)

3.8 Logging

By default, gueues log messages to kg . queue logger, and workers to kq.worker logger. You can use these default
loggers or set your own during queue/worker initialization.

Example:

import logging

from kafka import KafkaConsumer, KafkaProducer
from kg import Queue, Worker

formatter = logging.Formatter ('[% (levelname)s] % (me
stream_handler = logging.StreamHandler ()
stream_handler.setFormatter (formatter)

Set up "kg.queue" logger.

queue_logger = logging.getLogger ('kg.queue')
queue_logger.setlLevel (logging.INFO)
queue_logger.addHandler (stream_handler)

Set up "kg.worker" logger.

worker_logger = logging.getLogger ('kg.worker')
worker_logger.setLevel (logging.DEBUG)
worker_logger.addHandler (stream_handler)

Alternatively, you can inject your own loggers.
queue_logger = logging.getLogger ('your worker logger')
worker_logger = logging.getLogger ('your_worker_ logger')

producer = KafkaProducer (bootstrap_servers='127.0.0.1:9092")

consumer = KafkaConsumer (bootstrap_servers='127.0.0.1:9092", group_id="group')
queue = Queue ('topic', producer, logger=queue_logger)
worker = Worker ('topic', consumer, logger=worker_logger)

16 Chapter 3. Contents

Index

C

callback (kq.worker.Worker attribute), 12
consumer (kq.worker.Worker attribute), 12

D

deserializer (kq.worker.Worker attribute), 12

E

enqueue () (kq.queue.Queue method), 9

G

group (kq.worker. Worker attribute), 12

H

hosts (kq.queue.Queue attribute), 9
hosts (kg.worker. Worker attribute), 12

P

producer (kq.queue.Queue attribute), 9

Q

Queue (class in kq.queue), 8

S

serializer (kq.queue.Queue attribute), 9
start () (kg.worker.Worker method), 12

T

timeout (kq.queue.Queue attribute), 9
topic (kqg.queue.Queue attribute), 9
topic (kg.worker.Worker attribute), 12

U

using () (kq.queue.Queue method), 10

W

Worker (class in kg.worker), 11

17

	Requirements
	Installation
	Contents
	Index

